A comparison of neural network approaches for on-line prediction in IGRT.

نویسندگان

  • J H Goodband
  • O C L Haas
  • J A Mills
چکیده

Image-guided radiation therapy aims to improve the accuracy of treatment delivery by tracking tumor position and compensating for observed movement. Due to system latency it is sometimes necessary to predict tumor trajectory evolution in order to facilitate changes in beam delivery. Neural networks (NNs) have previously been investigated for predicting future tumor position because of their ability to model non-linear systems. However, no attempt has been made to optimize the NN training algorithms, and no mention has been made of potential errors which can be caused by using NNs for extrapolation purposes. In this work, after giving a brief explanation of NN theory, a comparison is made between 4 different adaptive algorithms for training time-series prediction NNs. New error criteria are introduced which highlight error maxima. Results are obtained by training the NNs using previously published data. A hybrid algorithm combining Bayesian regularization with conjugate-gradient backpropagation is demonstrated to give the best average prediction accuracy, whilst a generalized regression NN is shown to reduce the possibility of isolated large prediction errors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparison between knowledge-driven fuzzy and data-driven artificial neural network approaches for prospecting porphyry Cu mineralization; a case study of Shahr-e-Babak area, Kerman Province, SE Iran

The study area, located in the southern section of the Central Iranian volcano–sedimentary complex, contains a large number of mineral deposits and occurrences which is currently facing a shortage of resources. Therefore, the prospecting potential areas in the deeper and peripheral spaces has become a high priority in this region. Different direct and indirect methods try to predict promising a...

متن کامل

A comparison of different network based modeling methods for prediction of the torque of a SI engine equipped with variable valve timing

Nowadays, due to increasing the complexity of IC engines, calibration task becomes more severe and the need to use surrogate models for investigating of the engine behavior arises. Accordingly, many black box modeling approaches have been used in this context among which network based models are of the most powerful approaches thanks to their flexible structures. In this paper four network base...

متن کامل

Comparison of Three Decision-Making Models in Differentiating Five Types of Heart Disease: A Case Study in Ghaem Sub-Specialty Hospital

Introduction: cardiovascular diseases are becoming the main cause of mortality and morbidity in most countries. This research goal was to predict the types of heart diseases for more accurate diagnosis by data mining and neural network technics. Method: This research was an applied-survey study and after data preprocessing, three approaches of neural network, decision making tree and Bayes simp...

متن کامل

Comparison of artificial neural network with logistic regression in prediction of tendency to surgical intervention in nurses

Introduction: Logistic regression is one of the modeling methods for bipartite dependent variables. On the other hand, artificial neural network is a flexible method with the least limitation. The importance of growing unnecessary beauty surgeries and the importance of prediction and classification made us consider the present study, with the aim of comparing logistic regression and artificial ...

متن کامل

An Artificial Neural Network Model for Prediction of the Operational Parameters of Centrifugal Compressors: An Alternative Comparison Method for Regression

Nowadays, centrifugal compressors are commonly used in the oil and gas industry, particularly in the energy transmission facilities just like a gas pipeline stations. Therefore, these machines with different operational circumstances and thermodynamic characteristics are to be exploited according to the operational necessities. Generally, the most important operational parameters of a gas pipel...

متن کامل

Comparison of Three Decision-Making Models in Differentiating Five Types of Heart Disease: A Case Study in Ghaem Sub-Specialty Hospital

Introduction: cardiovascular diseases are becoming the main cause of mortality and morbidity in most countries. This research goal was to predict the types of heart diseases for more accurate diagnosis by data mining and neural network technics. Method: This research was an applied-survey study and after data preprocessing, three approaches of neural network, decision making tree and Bayes simp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical physics

دوره 35 3  شماره 

صفحات  -

تاریخ انتشار 2008